• CIFAR-10--人工智能数据集

    CIFAR-10--人工智能数据集

    由 Krizhevsky 等人提出。从微小图像中学习多层特征CIFAR -10数据集(加拿大高级研究所,10 个类别)是 Tiny Images 数据集的子集,由 60000 张 32x32 彩色图像组成。这些图像标有 10 个相互排斥的类别之一:飞机、汽车(但不是卡车或皮卡车)、鸟、猫、鹿、狗、青蛙、马、船和卡车(但不是皮卡车)。每类有 6000 张图像,每类有 5000 张训练图像和 1000 张测试图像。判断图像是否属于某个类的标准如下:类名应该位于“这张图片...

    作者:ROBOT@qwh    日期:2023.11.13    分类:人工智能 333
  • Zero123++:从单张图像推理出多个视图模型

    Zero123++:从单张图像推理出多个视图模型

        Zero123++,这是一种图像条件扩散模型,用于从单个输入视图生成 3D 一致的多视图图像。为了充分利用预训练的 2D 生成先验,我们开发了各种条件和训练方案,以最大限度地减少现成图像扩散模型(例如稳定扩散)的微调工作。Zero123++ 擅长从单个图像生成高质量、一致的多视图图像,克服纹理退化和几何错位等常见问题。此外,我们展示了在 Zero123++ 上训练 ControlNet 以增强对生成过程的控制的可行性。 ...

    作者:ROBOT@qwh    日期:2023.10.25    分类:人工智能 488
  • OpenAI考虑加入AI芯片制造联盟

    OpenAI考虑加入AI芯片制造联盟

    OpenAI是著名的ChatGPT背后的强大力量,可能很快就会深入研究人工智能芯片制造的动态世界。根据路透社的一份新报道,该公司正在积极考虑创建其独特的AI芯片,甚至正在考虑收购该领域的潜在目标。全球对AI芯片的需求正在飙升,尤其是在OpenAI的ChatGPT去年冲击市场之后。这种被称为AI加速器的专用芯片在培训和实施尖端的生成AI技术方面发挥着关键作用。目前,市场认为英伟达处于顶峰,在大多数AI芯片生产中占据主导地位。OpenAI对这些昂贵的芯片的依赖也是有限的,这使该公...

    作者:ROBOT@qwh    日期:2023.10.12    分类:人工智能 291
  • 与大型语言模型和机器人相关的资源、文章和观点列表

    与大型语言模型和机器人相关的资源、文章和观点列表

    我们收集了一些与大型语言模型(LLM)相关的文章,观点,视频和资源。其中一些链接还涵盖了其他生成模型。我们将定期更新此列表,以添加任何其他感兴趣的资源。本文是该系列的第三篇。(以前的版本在这里:v1 |v2.)什么是法学硕士以及它们是如何工作的什么是生成AI模型?,Kate Soule,来自IBM Technology的视频。大型语言模型简介,John Ewald,来自Google Cloud Tech的视频。什么是 GPT-4,它与 ChatGPT 有何不同?,A...

    作者:ROBOT@qwh    日期:2023.10.10    分类:人工智能 995
  • 什么是边缘人工智能和边缘计算?

    什么是边缘人工智能和边缘计算?

    边缘人工智能是人工智能最引人注目的新领域之一,它的目标是让人们运行人工智能流程,而不必担心隐私或因数据传输而导致的速度减慢。边缘人工智能正在使人工智能得到更广泛、更广泛的使用,让智能设备无需访问云即可快速对输入做出反应。虽然这是 Edge AI 的快速定义,但让我们花点时间通过探索使其成为可能的技术并查看 Edge AI 的一些用例来更好地了解 Edge AI。什么是边缘计算?为了真正理解Edge AI,我们首先需要了解边缘计算,而理解边缘计算的最好方式就是将其与云计算进行对...

    作者:ROBOT@qwh    日期:2023.10.07    分类:人工智能 513
  • 什么是KNN 邻近算法

    什么是KNN 邻近算法

    What is K-Nearest Neighbors (KNN)?K-最近邻是一种机器学习技术和算法,可用于回归和分类任务。K 最近邻检查目标数据点周围选定数量的数据点的标签,以便对数据点所属的类别进行预测。K 最近邻 (KNN) 是一种概念上简单但非常强大的算法,因此,它是最流行的机器学习算法之一。让我们深入研究 KNN 算法,看看它到底是如何工作的。充分了解 KNN 的运作方式将使您了解 KNN 的最佳和最差用例。K 最近邻 (KNN) 概述让我们在 2D 平面上可视化...

    作者:ROBOT@qwh    日期:2023.10.07    分类:人工智能 372
1
热门文章
  • 康普顿未来智慧农场

    康普顿未来智慧农场
    康普顿未来农场,使用更少的水和1%的土地,即可实现与产统农业相同产量....
  • 拆解 OpenAI 的新董事会

    拆解 OpenAI 的新董事会
    在人工智能和技术领域掀起波澜的惊人事件中,人工智能领域的领先实体 OpenAI 最近的领导地位发生了重大转变。以萨姆·奥尔特曼 (Sam Altman) 戏剧性地重返首席执行官职位以及随之而来的董事会改组为标志,这些变化代表了该组织的关键时刻。OpenAI 以其在人工智能研究和开发方面的开创性工作而闻名,包括广泛认可的 ChatGPT 和 DALL-E 模型,站在人工智能进步的最前沿。因此,董事会的重组不仅仅是人员的变动,还标志着人工智能领域最具影响力的组织之一的方向、优先事...
  • 一种自动确定计算机游戏状态中可能动作的方法

    一种自动确定计算机游戏状态中可能动作的方法
    由于手动彻底测试视频游戏软件非常困难,因此需要拥有能够自动探索不同游戏功能的人工智能代理。此类代理的关键要求是玩家动作的模型,代理可以使用该模型来确定不同游戏状态下的可能动作集,以及对代理策略选择的游戏执行选定的动作。目前使用的典型游戏引擎不提供这样的动作模型,导致现有的工作要么需要人工手动定义动作模型,要么不精确地猜测可能的动作。在我们的工作中,我们通过为游戏中存在的用户输入处理逻辑开发最先进的分析方法来演示程序分析如何有效解决该问题,该分析可以使用离散动作空间自动建模游戏...
  • 使用众包反馈来帮助训练机器人

    使用众包反馈来帮助训练机器人
    为了教人工智能代理一项新任务,比如如何打开厨房柜子,研究人员经常使用强化学习——这是一种试错过程,在该过程中,代理会因采取更接近目标的行动而获得奖励。在许多情况下,人类专家必须仔细设计奖励函数,这是一种激励机制,赋予代理人探索的动力。当智能体探索并尝试不同的动作时,人类专家必须迭代地更新奖励函数。这可能非常耗时、效率低下,并且难以扩展,尤其是当任务复杂且涉及许多步骤时。来自麻省理工学院、哈佛大学和华盛顿大学的研究人员开发了一种新的强化学习方法,该方法不依赖于专门设计的奖励函数...
  • HierSpeech++:通过零样本语音合成新架构

    HierSpeech++:通过零样本语音合成新架构
    基于大语言模型(LLM)的语音合成已广泛应用于零样本语音合成中。然而,它们需要大规模数据,并且具有与以前的自回归语音模型相同的局限性,包括推理速度慢和缺乏鲁棒性。本文提出了 HierSpeech++,一种快速、强大的零样本语音合成器,用于文本到语音(TTS)和语音转换(VC)。我们验证了分层语音合成框架可以显着提高合成语音的鲁棒性和表现力。此外,即使在零样本语音合成场景中,我们也显着提高了合成语音的自然度和说话人相似度。对于文本到语音,我们采用文本到向量框架,该框架根据文本表...