-
NVIDIA 宣布推出适用于人形机器人的 GR00T 项目基础模型
Isaac 机器人平台现为开发人员提供新的机器人训练模拟器、Jetson Thor 机器人计算机、生成式 AI 基础模型以及 CUDA 加速感知和操作库NVIDIA 今天宣布推出 GR00T 项目,这是一个用于人形机器人的通用基础模型,旨在进一步推动机器人技术和具体人工智能领域的突破。作为该计划的一部分,该公司还推出了一款用于基于 NVIDIA Thor 片上系统 (SoC) 的人形机器人的新型计算机 Jetson Thor,以及对 NVIDIA Isaac™ 机器人平台的重...
作者:airobotnews 日期:2024.03.22 分类:机器人 1668 -
OpenAI:马斯克希望我们与特斯拉合并或“完全控制”
据称,特斯拉和SpaceX的亿万富翁首席执行官埃隆·马斯克希望人工智能研究公司OpenAI要么与特斯拉合并,要么让他完全控制该组织。OpenAI 的一篇博文回应了马斯克对该公司提起的诉讼,披露了 2015 年至 2018 年马斯克仍参与公司运营时的电子邮件通信。 据报道,在 2017 年 OpenAI 正在探索向营利性模式转型以获取更多资金的一封电子邮件中,马斯克希望获得多数股权、董事会控制权以及首席执行官职位。然而,OpenAI 认为这种由个人控制的程度有悖于其使命。“埃隆...
作者:airobotnews 日期:2024.03.07 分类:人工智能 1446 -
解析 O'Reilly 2024 年技术趋势报告
在快速发展的技术领域,跟上最新趋势对于行业中的任何人来说都至关重要。O'Reilly 2024 年技术趋势报告成为这一努力的重要指南,全面概述了最重要的技术进步和模式。这份年度报告是根据 O'Reilly 著名在线学习平台 280 万用户的使用数据精心分析的产物。它提供了一个独特的机会来了解哪些技术工具正在获得关注,哪些技术工具正在衰退,从而使领导者和专业人士能够在战略规划和技能发展方面保持领先地位。这份报告的意义不仅仅在于统计数据;它是衡量技术风向的晴雨表。通过分析数百万用...
作者:airobotnews 日期:2024.01.28 分类:人工智能 1840 -
Meta 通过 Nvidia 芯片大力投资人工智能未来
Meta 正在深入人工智能领域,这是一项雄心勃勃的举措,标志着重大战略转变。该合资企业的核心是对英伟达尖端计算机芯片的大规模投资,这是人工智能研发不可或缺的一部分。Meta 首席执行官马克·扎克伯格 (Mark Zuckerberg) 最近透露了广泛的人工智能基础设施计划,这对于公司未来的技术路线图至关重要。这项巨大的投资不仅是为了增强当前的能力,而且是 Meta 致力于在人工智能领域开拓的明确标志。使用 Nvidia 的 H100 GPU 构建强大的人工智能基础设施Meta...
作者:airobotnews 日期:2024.01.24 分类:人工智能 1720 -
面对日益减少的蜂群,科学家们正在用机器人和智能蜂巢武装蜂王
无论是新闻报道还是撞击挡风玻璃的生物数量不断减少,您都无法忽视昆虫世界的状况很糟糕。过去三十年里,全球飞虫生物量减少了75%。这一趋势最著名的受害者之一是世界上最重要的传粉媒介蜜蜂。在美国,仅 2023 年就有48% 的蜂群死亡,成为有记录以来第二高死亡年份。这种重大损失的部分原因是蜂群崩溃综合症(CCD),即蜜蜂的突然消失。相比之下,欧洲国家报告的蜂群损失率较低,但仍然令人担忧,从 6% 到 32% 不等。这种下降导致我们许多重要粮食作物授粉不足,这种现象威胁着我们社会的粮...
作者:ROBOT@qwh 日期:2024.01.16 分类:机器人 1671 -
机器人模拟器Pyrobosim 介绍
ROS 2 支持 2D 移动机器人模拟器进行行为原型设计。pyrobosim由多边形层次结构实体组成,包括:机器人:一种可移动的实体,能够采取行动来改变自身状态和世界状态。房间:机器人可以导航的区域。走廊:连接两个房间的区域,机器人也可以在其中导航。位置:房间内可能包含物体(例如家具)的区域。对象生成:对象可能存在的位置的子区域(例如,左侧与右侧台面)。对象:可以在世界各地操作的离散实体。这一切均在 2.5D 环境中表示(具有垂直 (Z) 高度的 SE(2) 姿势)。 然而,...
作者:ROBOT@qwh 日期:2023.12.19 分类:机器人 1704 -
一种自动确定计算机游戏状态中可能动作的方法
由于手动彻底测试视频游戏软件非常困难,因此需要拥有能够自动探索不同游戏功能的人工智能代理。此类代理的关键要求是玩家动作的模型,代理可以使用该模型来确定不同游戏状态下的可能动作集,以及对代理策略选择的游戏执行选定的动作。目前使用的典型游戏引擎不提供这样的动作模型,导致现有的工作要么需要人工手动定义动作模型,要么不精确地猜测可能的动作。在我们的工作中,我们通过为游戏中存在的用户输入处理逻辑开发最先进的分析方法来演示程序分析如何有效解决该问题,该分析可以使用离散动作空间自动建模游戏...
作者:ROBOT@qwh 日期:2023.12.07 分类:人工智能 2479 -
HierSpeech++:通过零样本语音合成新架构
基于大语言模型(LLM)的语音合成已广泛应用于零样本语音合成中。然而,它们需要大规模数据,并且具有与以前的自回归语音模型相同的局限性,包括推理速度慢和缺乏鲁棒性。本文提出了 HierSpeech++,一种快速、强大的零样本语音合成器,用于文本到语音(TTS)和语音转换(VC)。我们验证了分层语音合成框架可以显着提高合成语音的鲁棒性和表现力。此外,即使在零样本语音合成场景中,我们也显着提高了合成语音的自然度和说话人相似度。对于文本到语音,我们采用文本到向量框架,该框架根据文本表...
作者:ROBOT@qwh 日期:2023.12.04 分类:学习教程 2328 -
使用众包反馈来帮助训练机器人
为了教人工智能代理一项新任务,比如如何打开厨房柜子,研究人员经常使用强化学习——这是一种试错过程,在该过程中,代理会因采取更接近目标的行动而获得奖励。在许多情况下,人类专家必须仔细设计奖励函数,这是一种激励机制,赋予代理人探索的动力。当智能体探索并尝试不同的动作时,人类专家必须迭代地更新奖励函数。这可能非常耗时、效率低下,并且难以扩展,尤其是当任务复杂且涉及许多步骤时。来自麻省理工学院、哈佛大学和华盛顿大学的研究人员开发了一种新的强化学习方法,该方法不依赖于专门设计的奖励函数...
作者:ROBOT@qwh 日期:2023.11.29 分类:机器人 2261